Source code for omc3.optics_measurements.chromatic

"""
Chromatic
----------------

This module contains chromatic calculations functionality of ``optics_measurements``.
It provides functions to compute various chromatic beam properties.
"""
from __future__ import annotations

import numpy as np
import pandas as pd

from omc3.optics_measurements.constants import DELTA, ERR, MDL
from omc3.optics_measurements.toolbox import df_prod, df_ratio


[docs] def calculate_w_and_phi(betas, dpps, input_files, measure_input, plane): columns = [f"{pref}{DELTA}{col}{plane}" for pref in ("", ERR) for col in ("BET", "ALF")] joined = betas[0].loc[:, columns] for i, beta in enumerate(betas[1:]): joined = pd.merge(joined, beta.loc[:, columns], how="inner", left_index=True, right_index=True, suffixes=('', '__' + str(i + 1))) for column in columns: joined.rename(columns={column: column + '__0'}, inplace=True) joined = pd.merge(joined, betas[np.argmin(np.abs(dpps))].loc[:, [f"ALF{plane}", f"{ERR}ALF{plane}"]], how="inner", left_index=True, right_index=True) for col in ("BET", "ALF"): fit = np.polyfit(np.repeat(dpps, 2), np.repeat(input_files.get_data(joined, f"{DELTA}{col}{plane}").T, 2, axis=0), 1, cov=True) joined[f"D{col}{plane}"] = fit[0][-2, :].T joined[f"{ERR}D{col}{plane}"] = np.sqrt(fit[1][-2, -2, :].T) a = joined.loc[:, f"DBET{plane}"].to_numpy() aerr = joined.loc[:, f"{ERR}DBET{plane}"].to_numpy() b = joined.loc[:, f"DALF{plane}"].to_numpy() - joined.loc[:, f"ALF{plane}"].to_numpy() * joined.loc[:, f"DBET{plane}"].to_numpy() berr = np.sqrt(df_prod(joined, f"{ERR}DALF{plane}", f"{ERR}DALF{plane}") + np.square(df_prod(joined, f"{ERR}ALF{plane}", f"DBET{plane}")) + np.square(df_prod(joined, f"ALF{plane}", f"{ERR}DBET{plane}"))) w = np.sqrt(np.square(a) + np.square(b)) joined[f"W{plane}"] = w joined[f"{ERR}W{plane}"] = np.sqrt(np.square(a * aerr / w) + np.square(b * berr / w)) joined[f"PHI{plane}"] = np.arctan2(b, a) / (2 * np.pi) joined[f"{ERR}PHI{plane}"] = 1 / (1 + np.square(a / b)) * np.sqrt( np.square(aerr / b) + np.square(berr * a / np.square(b))) / (2 * np.pi) output_df = pd.merge(measure_input.accelerator.model.loc[:, ["S", f"MU{plane}", f"BET{plane}", f"ALF{plane}", f"W{plane}", f"PHI{plane}"]], joined.loc[:, [f"{pref}{col}{plane}" for pref in ("", ERR) for col in ("W", "PHI")]], how="inner", left_index=True, right_index=True, suffixes=(MDL, '')) output_df.rename(columns={"SMDL": "S"}, inplace=True) return output_df
[docs] def calculate_chromatic_coupling(couplings, dpps, input_files, measure_input): # TODO how to treat the model values? columns = [f"{pref}{col}{part}" for pref in ("", ERR) for col in ("F1001", "F1010") for part in ("RE", "IM")] joined = couplings[0].loc[:, columns] for i, coup in enumerate(couplings[1:]): joined = pd.merge(joined, coup.loc[:, columns], how="inner", left_index=True, right_index=True, suffixes=('', '__' + str(i + 1))) for column in columns: joined.rename(columns={column: column + '__0'}, inplace=True) for col in ("F1001", "F1010"): for part in ("RE", "IM"): fit = np.polyfit(np.repeat(dpps, 2), np.repeat(input_files.get_data(joined, f"{col}{part}").T, 2, axis=0), 1, cov=True) joined[f"D{col}{part}"] = fit[0][-2, :].T joined[f"{ERR}D{col}{part}"] = np.sqrt(fit[1][-2, -2, :].T) joined[f"D{col}"] = np.sqrt(np.square(joined.loc[:, f"D{col}RE"].to_numpy()) + np.square(joined.loc[:, f"D{col}IM"].to_numpy())) joined[f"{ERR}D{col}"] = np.sqrt(np.square(joined.loc[:, f"D{col}RE"].to_numpy() * df_ratio(joined, f"{ERR}D{col}RE", f"D{col}")) + np.square(joined.loc[:, f"D{col}IM"].to_numpy() * df_ratio(joined, f"{ERR}D{col}IM", f"D{col}"))) return pd.merge( measure_input.accelerator.model.loc[:, ["S"]], joined.loc[:,[f"{pref}{col}{part}" for pref in ("", ERR) for col in ("F1001", "F1010") for part in ("", "RE", "IM")]], how="inner", left_index=True, right_index=True, )